Discussion about this post

User's avatar
Pierre Igot's avatar

Beside the obvious ones, one other “outcome I care about” is whether, with a vaccine, you might still get a case of COVID-19 that is mild, but then followed later on by a rather disabling case of so-called “long COVID”. (There seems to be examples of just that.)

As someone who's already living with one chronic condition of the “unexplained” variety, likely some kind of weird autoimmune problem, I don't particularly fancy adding more chronic symptoms to my situation. Of course, this existing chronic condition doesn't qualify me for early vaccination, so I have to wait my turn and will have to remain very careful until I can get a shot. (It'll be a while, here in Nova Scotia.)

So one question that is not addressed anywhere (and not your column either) is: how good are the vaccines at preventing “long COVID”? I am tempted to believe that the ones with higher efficacy might be better, but of course I have no evidence of that. And it'll likely be a long time before we have any data on this (if ever).

I guess the bottom line is that I'll still have to take the first vaccine I can get, whichever it is. But the whole “long COVID” issue will remain a big question mark for a long time, I am afraid.

Expand full comment
Dave's avatar

Since fairly early in the pandemic, I've been wondering about the four coronaviruses that are usually considered "common colds." (Human coronavirus 229E (HCoV-229E), Human coronavirus OC43 (HCoV-OC43), Human coronavirus HKU1 (HCoV-HKU1) and Human coronavirus NL63 (HCoV-NL63)). I've read that some of these can lead to pneumonia and occasionally death in older or immunocompromised people; and I've also read about the similarity between long COVID and Chronic Fatigue Syndrome / myalgic encephalomyelitis, and the fact that some researchers are now considering the possibility that ME/CFS might have something to do with one of the "common cold" coronaviruses. To my layperson's ears this sure sounds as if the following might be true: that all the "common cold" coronaviruses are just as bad as SARS-CoV-2, with the gigantic difference that they are endemic, and the vast majority of people contract mild cases when they are very young, providing immunity from the more serious effects for the rest of our lives. The majority, but not all. Some catch one of the "common cold" coronaviruses at a less advantageous age and are plagued by symptoms for years afterwards. Anyway, that's a layperson's guess. I'm wondering if any immunologists are following similar lines of reasoning, (or why they might dismiss this idea out-of-hand), and more to the point, I'm wondering if there is any research into a "broad-spectrum" coronavirus vaccine, one that might provide or boost resistance to all of the coronaviruses that affect humans.

Thanks to Zeynep and all the thoughtful posters!

Expand full comment
16 more comments...

No posts